Question			Expected Answers	Marks	Additional Guidance
1	(a)		Straight line through origin (judge by eye) Correct shape of curve in the plastic region	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
	(b)		Copper	B1	
	(c)		Maximum stress material can withstand (before fracture)	B1	Allow: UTS = breaking stress Allow: UTS = breaking force /(cross-sectional) area
	(d)		extension (or compression) \propto force (as long as elastic limit is not exceeded)	B1	Allow: ‘load’ instead of force Not: $x \propto F$, unless the labels are defined
	(e)	(i)	$\begin{aligned} & \text { force }=75 \times 0.085 \\ & F=6.38(\mathrm{~N}) \approx 6.4(\mathrm{~N}) \end{aligned}$	C1 A1	
		(ii)	$\begin{aligned} & \text { acceleration }=\frac{6.38}{2.5 \times 10^{-3}} \\ & \text { acceleration }=2550\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	B1	Note: $a=\frac{k x-m g}{m}$ gives $2540\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ Possible ecf
		(iii)	Correct selection of equation: $m g h / \frac{1}{2} k x^{2} / \frac{1}{2} \mathrm{Fx}$ $\begin{aligned} & 0.0025 \times 9.81 \times h=\frac{1}{2} \times 75 \times 0.085^{2} \\ & \text { height }=11(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: Bald answer of $11(\mathrm{~m})$ scores 3/3 marks
			Total	11	

Question		er	Marks	Guidance
2	(a)	The graph is a straight line through the origin / F proportional to $x /$ force is proportional to extension	B1	Use ticks on Scoris to show where the marks are awarded \mathscr{Z} origin / proportional must be spelled correctly to gain the mark Not: $F \propto x$
	(b)	force constant	B1	Allow: spring constant
	(c)	$\begin{aligned} & \text { stress }=\frac{100}{\pi \times\left(2.8 \times 10^{-4}\right)^{2}}\left(=4.06 \times 10^{8} \mathrm{~Pa}\right) \\ & \text { strain }=\frac{4.0 \times 10^{-3}}{1.60}\left(=2.5 \times 10^{-3}\right) \\ & E=\frac{4.06 \times 10^{8}}{2.5 \times 10^{-3}} \\ & \text { Young modulus }=1.6 \times 10^{11}(\mathrm{~Pa}) \end{aligned}$	C1 C1 A1	Allow use of any other point on the graph. Alternative method: $\begin{array}{ll} E=\frac{F L}{A x} & \text { C1 } \quad \text { (Any subject) } \\ E=\frac{100 \times 1.60}{\pi \times\left(2.8 \times 10^{-4}\right)^{2} \times 4.0 \times 10^{-3}} & \text { C1 } \\ E=1.6 \times 10^{11}(\mathrm{~Pa}) & \text { A1 } \end{array}$ Allow 2 marks for $1.6 \times 10^{n}, n \neq 11$ (POT error)
	(d)	(Straight line) with quarter gradient Correct reasoning, for example: - gradient $=E A / L$ and A decreases by a factor of 4 - A decreases by a factor of 4 and the same force gives 4 times the extension	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Note: No need to define the labels
	(e)	$1 / 2 k x^{2}=1 / 2 m v^{2}$ Manipulation leading to $v \propto x$, for example: - taking square root of both sides (gives $v \propto x$) - $v^{2} \propto x^{2}$ (hence $v \propto x$) - $\quad v=(\sqrt{k / m}) x$ (and therefore $v \propto x)$	M1 A1	Note: No need to define the labels
		Total	9	

Question			Answers	Marks	Guidance
3	(a)		The extension \propto (applied) force (on spring) (as long as the elastic limit is not exceeded)	B1	
	(b)	(i)	Gradient / slope (of line / graph) / force divided by extension \checkmark The term gradient /slope / divided to be included and spelled correctly to gain the B1 mark	B1	Must use tick or cross on Scoris to show if the mark is awarded
		(ii)	Area (under the graph / line)	B1	Allow: $1 / 2 \times$ force \times extension Allow: $1 / 2 \times$ force constant \times extension ${ }^{2}$ if (b)(i) is correct
	(c)		The extension (for the combination) is doubled Force (for each spring) is the same / constant (force constant $=$ force/extension, hence it is halved)	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow: 1 mark for ' F is the same, x is doubled' Allow: 2 marks for 'the springs need half the force to give the same (total) extension'
	(d)	(i)	Young modulus = stress/strain As long as the elastic limit is not exceeded / in the linear region of stress against strain graph / Hooke's law is obeyed	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	
		$\begin{gathered} \text { (ii) } \\ 1 \end{gathered}$	$\begin{aligned} & \text { stress }=\frac{4.2}{0.20 \times 10^{-6}} \\ & \text { stress }=2.1 \times 10^{7}(\mathrm{~Pa}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: 1 mark for $2.1 \times 10^{n}, \mathrm{n} \neq 7$
		$\begin{gathered} \text { (ii) } \\ 2 \end{gathered}$	$\begin{aligned} & \text { Young modulus }=\frac{2.1 \times 10^{7}}{0.015} \\ & \text { Young modulus }=1.4 \times 10^{9}(\mathrm{~Pa}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (ii)1
		(ii)	$\begin{aligned} & \text { energy }=\frac{1}{2} F x \\ & x=0.70 \times 0.015 \quad I x=0.0105(\mathrm{~m}) \\ & \text { energy }=\frac{1}{2} \times 4.2 \times(0.70 \times 0.015) \\ & \text { energy }=2.2 \times 10^{-2}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	
			Total	14	

$\mathbf{4}$	Expected Answers	Marks	Additional Guidance
$\mathbf{a (i)}$	\mathbf{Y} (is brittle)	B1	
a(ii)	(Both) obey Hooke's law	Allow (For both) stress \propto strain / elastic (behaviour) / 'not plastic (behaviour)' / force \propto extension Not: 'straight line(s)'	
$\mathbf{a (i i i) ~}$	Gradient (of the linear section) is equal to Young Modulus / gradient is largest \mathbf{X} (has largest Young modulus)	B1	Allow: 'slope' for 'gradient'
\mathbf{b}	(force increases by a factor of) 30^{2} force $=240 \times 30^{2}$ force $=2.16 \times 10^{5}(\mathrm{~N})$	C1	A1
	Allow: 1 mark for value of breaking stress of 1.2(2) $\times 10^{9}(\mathrm{~Pa})$		

