Q	Question		Expected Answers	Marks	Additional Guidance
1	(a)		Straight line through origin (judge by eye)	B1	
			Correct shape of curve in the plastic region	B1	
	(b)		Copper	B1	
	(c)		Maximum stress material can withstand (before fracture)	B1	Allow: UTS = breaking stress Allow: UTS = breaking force /(cross-sectional) area
	(d)		extension (or compression) ∞ force (as long as elastic limit is not exceeded)	B1	Allow : 'load' instead of force Not : $x \propto F$, unless the labels are defined
	(e)	(i)	force = 75 × 0.085	C1	
			$F = 6.38 \text{ (N)} \approx 6.4 \text{ (N)}$	A1	
		(ii)	acceleration = $\frac{6.38}{2.5 \times 10^{-3}}$ acceleration = 2550 (m s ⁻²)	B1	Note : $a = \frac{kx - mg}{m}$ gives 2540 (m s ⁻²) Possible ecf
		(iii)	Correct selection of equation: $mgh / \frac{1}{2}kx^2 / \frac{1}{2}Fx$	C1	
			$0.0025 \times 9.81 \times h = \frac{1}{2} \times 75 \times 0.085^{2}$	C1	
			height = 11 (m)	A1	Note: Bald answer of 11 (m) scores 3/3 marks
			Total	11	

C	uestio	n er	Marks	Guidance
2	(a)	The graph is a straight line through the <u>origin</u> / F <u>proportional</u> to x / force is <u>proportional</u> to extension	B1	Use ticks on Scoris to show where the marks are awarded \nearrow origin / proportional must be spelled correctly to gain the mark Not: $F \propto X$
	(b)	force constant	B1	Allow: spring constant
	(c)	stress = $\frac{100}{\pi \times (2.8 \times 10^{-4})^2}$ (= 4.06 × 10 ⁸ Pa) strain = $\frac{4.0 \times 10^{-3}}{1.60}$ (= 2.5 × 10 ⁻³) $E = \frac{4.06 \times 10^8}{2.5 \times 10^{-3}}$ Young modulus = 1.6 × 10 ¹¹ (Pa)	C1 C1	Allow use of any other point on the graph. Alternative method: $E = \frac{FL}{Ax} \qquad \qquad \text{C1} \text{(Any subject)}$ $E = \frac{100 \times 1.60}{\pi \times (2.8 \times 10^{-4})^2 \times 4.0 \times 10^{-3}} \qquad \text{C1}$ $E = 1.6 \times 10^{11} \text{ (Pa)} \qquad \qquad \text{A1}$ Allow 2 marks for 1.6×10^n , $n \neq 11$ (POT error)
	(d)	 (Straight line) with quarter gradient Correct reasoning, for example: gradient = EA/L and A decreases by a factor of 4 A decreases by a factor of 4 and the same force gives 4 times the extension 	B1 B1	Note: No need to define the labels
	(e)	$1/2 kx^2 = 1/2 mv^2$ Manipulation leading to $v ∞ x$, for example: • taking square root of both sides (gives $v ∞ x$) • $v^2 ∞ x^2$ (hence $v ∞ x$) • $v = (\sqrt{k/m})x$ (and therefore $v ∞ x$)	M1 A1	Note: No need to define the labels
		Total	9	

Question		on	Answers	Marks	Guidance	
3	(a)		The extension ∞ (applied) force (on spring) (as long as the elastic limit is not exceeded)	B1		
	(b)	(i)	Gradient / slope (of line / graph) / force divided by extension The term gradient /slope / divided to be included and spelled correctly to gain the B1 mark	B1	Must use tick or cross on Scoris to show if the mark is awarded	
		(ii)	Area (under the graph / line)	B1	Allow: ½ × force × extension Allow: ½ × force constant × extension ² if (b)(i) is correct	
	(c)		The extension (for the combination) is doubled Force (for each spring) is the same / constant (force constant = force/extension, hence it is halved)	B1 B1	Allow: 1 mark for 'F is the same, x is doubled' Allow: 2 marks for 'the springs need half the force to give the same (total) extension'	
	(d)	(i)	Young modulus = stress/strain As long as the elastic limit is not exceeded / in the linear region of stress against strain graph / Hooke's law is obeyed	M1 A1		
		(ii) 1	stress = $\frac{4.2}{0.20 \times 10^{-6}}$ stress = 2.1×10^{7} (Pa)	C1 A1	Allow : 1 mark for 2.1×10^n , $n \ne 7$	
		(ii) 2	Young modulus = $\frac{2.1 \times 10^7}{0.015}$ Young modulus = 1.4×10^9 (Pa)	C1 A1	Possible ecf from (ii)1	
		(ii) 3	energy = $\frac{1}{2}Fx$ $x = 0.70 \times 0.015$ / $x = 0.0105$ (m) energy = $\frac{1}{2} \times 4.2 \times (0.70 \times 0.015)$ energy = 2.2×10^{-2} (J)	C1 C1 A1		
			Total	14		

4	Expected Answers	Marks	Additional Guidance
a(i)	Y (is brittle)	B1	
a(ii)	(Both) obey Hooke's law	B1	Allow (For both) stress ∝ strain / elastic (behaviour) / 'not plastic (behaviour)' / force ∞ extension Not: 'straight line(s)'
a(iii)	Gradient (of the linear section) is equal to Young Modulus / gradient is largest	B1	Allow: 'slope' for 'gradient'
	X (has largest Young modulus)	B1	
b	(force increases by a factor of) 30^2 force = 240×30^2	C1	
	force = 2.16×10^5 (N)	A1	Allow : 1 mark for value of breaking stress of $1.2(2) \times 10^9$ (Pa)
	Total	6	

Q	Question		Expected Answers	Marks	Additional Guidance
5	(a)		The graph shows length and not extension of the spring / spring has original length (of 2.0 cm) (AW)	B1	Allow: 'length cannot be zero'
	(b)		Straight line (graph) / linear graph / force ∞ extension / constant gradient (graph)	B1	Not 'force ∞ length'
	(c)		force constant = $\frac{2.0}{0.04}$ force constant = 50 (N m ⁻¹)	C1 A1	Note : The mark is for any correct substitution Allow : 1 mark for 0.5 (N m ⁻¹) – 10 ⁿ error Allow 1 mark for $5/12 \times 10^{-2} = 41.7$ or $4/10 \times 10^{-2} = 40$ or $3/8 \times 10^{-2} = 37.5$ or $2/6 \times 10^{-2} = 33.3$ or
	(d)		work done = $\frac{1}{2}Fx$ or $\frac{1}{2}kx^2$ or 'area under graph'	C1	$\frac{3/6 \times 10^{-2} - 37.3 \text{ of } 2/6 \times 10^{-2} - 33.3 \text{ of }}{1/4 \times 10^{-2} - 25}$
			work done = $\frac{1}{2} \times 3.0 \times 0.06$ or $\frac{1}{2} \times 50 \times 0.06^2$		Possible ecf
			work done = 0.09 (J)	A1	Note: 1 sf answer is allowed
	(e)		Find the gradient / slope (of the tangent / graph)	B1	
			Maximum speed at 1.0s / 3.0s / 5.0s / steepest 'part' of graph / displacement = 0	B1	Allow:2 marks for 'steepest / maximum gradient'
			Total	8	